Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
1.
Int Ophthalmol ; 44(1): 61, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38345780

RESUMO

PURPOSE: The present review will summarize FECD-associated genes and pathophysiology, diagnosis, current  therapeutic approaches, and future treatment perspectives. METHODS: Literature review. RESULTS: Fuchs' endothelial corneal dystrophy (FECD) is the most common bilateral corneal dystrophy and accounts for one-third of all corneal transplants performed in the US. FECD is caused by a combination of genetic and non-heritable factors, and there are two types: early-onset FECD, which affects individuals from an early age and is usually more severe, and late-onset FECD, which is more common and typically manifests around the age of 40. The hallmark findings of FECD include progressive loss of corneal endothelial cells and the formation of focal excrescences (guttae) on the Descemet membrane. These pathophysiological changes result in progressive endothelial dysfunction, leading to a decrease in visual acuity and blindness in later stages. The present review will summarize FECD-associated genes and pathophysiology, diagnosis, current therapeutic approaches, and future treatment perspectives. CONCLUSION: With the characterization and understanding of FECD-related genes and ongoing research into regenerative therapies for corneal endothelium, we can hope to see more significant improvements in the future in the management and care of the disease.


Assuntos
Transplante de Córnea , Distrofia Endotelial de Fuchs , Humanos , Distrofia Endotelial de Fuchs/diagnóstico , Distrofia Endotelial de Fuchs/genética , Distrofia Endotelial de Fuchs/terapia , Células Endoteliais , Endotélio Corneano , Cegueira
2.
Cardiovasc Res ; 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38230606

RESUMO

AIMS: Human pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) provide a platform to identify and characterize factors that regulate the maturation of CMs. The transition from an immature fetal to adult CM state entails coordinated regulation of the expression of genes involved in myofibril formation and OXPHOS among others. Lysine demethylase 5 (KDM5) specifically demethylate H3K4me1/2/3 and have emerged as potential regulators of expression of genes involved in cardiac development and mitochondrial function.The purpose of this study is to determine the role of KDM5 in iPSC-CM maturation. METHODS AND RESULTS: KDM5A, B, and C proteins were mainly expressed in the early post-natal stages and their expressions were progressively downregulated in the postnatal cardiomyocytes and were absent in adult hearts and CMs. In contrast, KDM5 proteins were persistently expressed in the iPSC-CMs up to 60 days after the induction of myogenic differentiation, consistent with the immaturity of these cells. Inhibition of KDM5 by KDM5-C70 -a pan-KDM5 inhibitor, induced differential expression of 2,372 genes, including upregulation of genes involved in fatty acid oxidation (FAO), OXPHOS, and myogenesis in the iPSC-CMs. Likewise, genome-wide profiling of H3K4me3 binding sites by the CUT&RUN (Cleavage Under Targets & Release Using Nuclease) assay showed enriched of the H3K4me3 peaks at the promoter regions of genes encoding FAO, OXPHOS, and sarcomere proteins. Consistent with the chromatin and gene expression data, KDM5 inhibition increased expression of multiple sarcomere proteins and enhanced myofibrillar organization. Furthermore, inhibition of KDM5 increased H3K4me3 deposits at the promoter region of the ESRRA gene and increased its RNA and protein levels. Knockdown of ESRRA in KDM5-C70-treated iPSC-CM suppressed expression of a subset of the KDM5 targets. In conjunction with changes in the gene expression, KDM5 inhibition increased oxygen consumption rate and contractility in iPSC-CMs. CONCLUSIONS: KDM5 inhibition enhances maturation of iPSC-CMs by epigenetically upregulating the expressions of OXPHOS, FAO, and sarcomere genes and enhancing myofibril organization and mitochondrial function.

3.
Artigo em Inglês | MEDLINE | ID: mdl-38028973

RESUMO

Heart failure (HF) remains a leading cause of death worldwide, with increasing prevalence and burden. Despite extensive research, a cure for HF remains elusive. Traditionally, the study of HF's pathogenesis and therapies has relied heavily on animal experimentation. However, these models have limitations in recapitulating the full spectrum of human HF, resulting in challenges for clinical translation. To address this translational gap, research employing human cells, especially cardiomyocytes derived from human-induced pluripotent stem cells (hiPSC-CMs), offers a promising solution. These cells facilitate the study of human genetic and molecular mechanisms driving cardiomyocyte dysfunction and pave the way for research tailored to individual patients. Further, engineered heart tissues combine hiPSC-CMs, other cell types, and scaffold-based approaches to improve cardiomyocyte maturation. Their tridimensional architecture, complemented with mechanical, chemical, and electrical cues, offers a more physiologically relevant environment. This review explores the advantages and limitations of conventional and innovative methods used to study HF pathogenesis, with a primary focus on ischemic HF due to its relative ease of modeling and clinical relevance. We emphasize the importance of a collaborative approach that integrates insights obtained in animal and hiPSC-CMs-based models, along with rigorous clinical research, to dissect the mechanistic underpinnings of human HF. Such an approach could improve our understanding of this disease and lead to more effective treatments.


Assuntos
Insuficiência Cardíaca , Células-Tronco Pluripotentes Induzidas , Animais , Humanos , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Insuficiência Cardíaca/terapia , Insuficiência Cardíaca/metabolismo
4.
bioRxiv ; 2023 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-37090524

RESUMO

Rationale: Human pluripotent stem cell-derived CMs (iPSC-CMs) are a valuable tool for disease modeling, cell therapy and to reconstruct the CM maturation process and identify, characterize factors that regulate maturation. The transition from immature fetal to adult CM entails coordinated regulation of the mature gene programming, which is characterized by the induction of myofilament and OXPHOS gene expression among others. Recent studies in Drosophila , C. elegans, and C2C12 myoblast cell lines have implicated the histone H3K4me3 demethylase KDM5 and its homologs, as a potential regulator of developmental gene program and mitochondrial function. We speculated that KDM5 may potentiate the maturation of iPSC-CMs by targeting a conserved epigenetic program that encompass mitochondrial OXPHOS and other CM specific maturation genes. Objectives: The purpose of this study is to determine the role of KDM5 in iPSC-CM maturation. Methods and Results: Immunoblot analysis revealed that KDM5A, B, and C expression was progressively downregulated in postnatal cardiomyocytes and absent in adult hearts and CMs. Additionally, KDM5 proteins were found to be persistently expressed in iPSC-CMs up to 60 days after the onset of myogenic differentiation, consistent with the immaturity of these cells. Inhibition of KDM5 by KDM5-C70 -a pan-KDM5 inhibitor-resulted in differential regulation of 2,372 genes including upregulation of Fatty acid oxidation (FAO), OXPHOS, and myogenic gene programs in iPSC-CMs. Likewise, genome-wide profiling of H3K4me3 binding sites by the CUT&RUN assay revealed enriched H3K4me3 peaks at the promoter regions of FAO, OXPHOS, and sarcomere genes. Consistent with the chromatin and gene expression data, KDM5 inhibition led to increased expression of multiple sarcomere proteins, enhanced myofibrillar organization and improved calcium handling. Furthermore, inhibition of KDM5 increased H3K4me3 deposits at the promoter region of the ESRRA gene, which is known to regulate OXPHOS and cardiomyocyte maturation, and resulted in its increased RNA and protein levels. Finally, KDM5 inhibition increased baseline, peak, and spare oxygen consumption rates in iPSC-CMs. Conclusions: KDM5 regulates the maturation of iPSC-CMs by epigenetically regulating the expression of ESRRA, OXPHOS, FAO, and sarcomere genes and enhancing myofibril organization and mitochondrial function.

5.
PLoS One ; 16(8): e0255452, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34407099

RESUMO

Cardiac hypertrophy is the result of responses to various physiological or pathological stimuli. Recently, we showed that polycystin-1 participates in cardiomyocyte hypertrophy elicited by pressure overload and mechanical stress. Interestingly, polycystin-1 knockdown does not affect phenylephrine-induced cardiomyocyte hypertrophy, suggesting that the effects of polycystin-1 are stimulus-dependent. In this study, we aimed to identify the role of polycystin-1 in insulin-like growth factor-1 (IGF-1) signaling in cardiomyocytes. Polycystin-1 knockdown completely blunted IGF-1-induced cardiomyocyte hypertrophy. We then investigated the molecular mechanism underlying this result. We found that polycystin-1 silencing impaired the activation of the IGF-1 receptor, Akt, and ERK1/2 elicited by IGF-1. Remarkably, IGF-1-induced IGF-1 receptor, Akt, and ERK1/2 phosphorylations were restored when protein tyrosine phosphatase 1B was inhibited, suggesting that polycystin-1 knockdown deregulates this phosphatase in cardiomyocytes. Moreover, protein tyrosine phosphatase 1B inhibition also restored IGF-1-dependent cardiomyocyte hypertrophy in polycystin-1-deficient cells. Our findings provide the first evidence that polycystin-1 regulates IGF-1-induced cardiomyocyte hypertrophy through a mechanism involving protein tyrosine phosphatase 1B.


Assuntos
Fator de Crescimento Insulin-Like I , Miócitos Cardíacos , Canais de Cátion TRPP , Animais , Cardiomegalia , Fosforilação , Transdução de Sinais
6.
FASEB J ; 35(8): e21796, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34324238

RESUMO

Polycystin-1 (PC1) is a transmembrane protein found in different cell types, including cardiomyocytes. Alterations in PC1 expression have been linked to mitochondrial damage in renal tubule cells and in patients with autosomal dominant polycystic kidney disease. However, to date, the regulatory role of PC1 in cardiomyocyte mitochondria is not well understood. The analysis of mitochondrial morphology from cardiomyocytes of heterozygous PC1 mice (PDK1+/- ) using transmission electron microscopy showed that cardiomyocyte mitochondria were smaller with increased mitochondria density and circularity. These parameters were consistent with mitochondrial fission. We knocked-down PC1 in cultured rat cardiomyocytes and human-induced pluripotent stem cells (iPSC)-derived cardiomyocytes to evaluate mitochondrial function and morphology. The results showed that downregulation of PC1 expression results in reduced protein levels of sub-units of the OXPHOS complexes and less functional mitochondria (reduction of mitochondrial membrane potential, mitochondrial respiration, and ATP production). This mitochondrial dysfunction activates the elimination of defective mitochondria by mitophagy, assessed by an increase of autophagosome adapter protein LC3B and the recruitment of the Parkin protein to the mitochondria. siRNA-mediated PC1 knockdown leads to a loss of the connectivity of the mitochondrial network and a greater number of mitochondria per cell, but of smaller sizes, which characterizes mitochondrial fission. PC1 silencing also deregulates the AKT-FoxO1 signaling pathway, which is involved in the regulation of mitochondrial metabolism, mitochondrial morphology, and processes that are part of cell quality control, such as mitophagy. Together, these data provide new insights about the controls that PC1 exerts on mitochondrial morphology and function in cultured cardiomyocytes dependent on the AKT-FoxO1 signaling pathway.


Assuntos
Proteína Forkhead Box O1/metabolismo , Mitofagia/fisiologia , Miócitos Cardíacos/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Canais de Cátion TRPP/metabolismo , Animais , Animais Recém-Nascidos , Proteína Forkhead Box O1/genética , Regulação da Expressão Gênica/fisiologia , Inativação Gênica , Mitocôndrias/metabolismo , Mitofagia/genética , Proteínas Proto-Oncogênicas c-akt/genética , Ratos , Ratos Sprague-Dawley , Canais de Cátion TRPP/genética
9.
Nat Commun ; 12(1): 1684, 2021 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-33727534

RESUMO

Heart failure with preserved ejection fraction (HFpEF) is now the dominant form of heart failure and one for which no efficacious therapies exist. Obesity and lipid mishandling greatly contribute to HFpEF. However, molecular mechanism(s) governing metabolic alterations and perturbations in lipid homeostasis in HFpEF are largely unknown. Here, we report that cardiomyocyte steatosis in HFpEF is coupled with increases in the activity of the transcription factor FoxO1 (Forkhead box protein O1). FoxO1 depletion, as well as over-expression of the Xbp1s (spliced form of the X-box-binding protein 1) arm of the UPR (unfolded protein response) in cardiomyocytes each ameliorates the HFpEF phenotype in mice and reduces myocardial lipid accumulation. Mechanistically, forced expression of Xbp1s in cardiomyocytes triggers ubiquitination and proteasomal degradation of FoxO1 which occurs, in large part, through activation of the E3 ubiquitin ligase STUB1 (STIP1 homology and U-box-containing protein 1) a novel and direct transcriptional target of Xbp1s. Our findings uncover the Xbp1s-FoxO1 axis as a pivotal mechanism in the pathogenesis of cardiometabolic HFpEF and unveil previously unrecognized mechanisms whereby the UPR governs metabolic alterations in cardiomyocytes.


Assuntos
Proteína Forkhead Box O1/metabolismo , Insuficiência Cardíaca/metabolismo , Insuficiência Cardíaca/fisiopatologia , Metabolismo dos Lipídeos , Contração Miocárdica , Volume Sistólico , Proteína 1 de Ligação a X-Box/metabolismo , Animais , Sequência de Bases , Sítios de Ligação , Sequência Conservada , Deleção de Genes , Células HEK293 , Insuficiência Cardíaca/genética , Ventrículos do Coração/patologia , Ventrículos do Coração/fisiopatologia , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Modelos Biológicos , Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , Fenótipo , Estabilidade Proteica , Proteólise , Transcrição Gênica , Ubiquitina-Proteína Ligases/metabolismo
10.
Autophagy ; 17(7): 1714-1728, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-32543276

RESUMO

Macroautophagy/autophagy is an intracellular process involved in the breakdown of macromolecules and organelles. Recent studies have shown that PKD2/PC2/TRPP2 (polycystin 2, transient receptor potential cation channel), a nonselective cation channel permeable to Ca2+ that belongs to the family of transient receptor potential channels, is required for autophagy in multiple cell types by a mechanism that remains unclear. Here, we report that PKD2 forms a protein complex with BECN1 (beclin 1), a key protein required for the formation of autophagic vacuoles, by acting as a scaffold that interacts with several co-modulators via its coiled-coil domain (CCD). Our data identified a physical and functional interaction between PKD2 and BECN1, which depends on one out of two CCD domains (CC1), located in the carboxy-terminal tail of PKD2. In addition, depletion of intracellular Ca2+ with BAPTA-AM not only blunted starvation-induced autophagy but also disrupted the PKD2-BECN1 complex. Consistently, PKD2 overexpression triggered autophagy by increasing its interaction with BECN1, while overexpression of PKD2D509V, a Ca2+ channel activity-deficient mutant, did not induce autophagy and manifested diminished interaction with BECN1. Our findings show that the PKD2-BECN1 complex is required for the induction of autophagy, and its formation depends on the presence of the CC1 domain of PKD2 and on intracellular Ca2+ mobilization by PKD2. These results provide new insights regarding the molecular mechanisms by which PKD2 controls autophagy.Abbreviations: ADPKD: autosomal dominant polycystic kidney disease; ATG: autophagy-related; ATG14/ATG14L: autophagy related 14; Baf A1: bafilomycin A1; BCL2/Bcl-2: BCL2 apoptosis regulator; BCL2L1/BCL-XL: BCL2 like 1; BECN1: beclin 1; CCD: coiled-coil domain; EBSS: Earle's balanced salt solution; ER: endoplasmic reticulum; GAPDH: glyceraldehyde-3-phosphate dehydrogenase; GFP: green fluorescent protein; GOLGA2/GM130: golgin A2; GST: glutathione s-transferase; LAMP1: lysosomal associated membrane protein 1; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MTORC1: mechanistic target of rapamycin kinase complex 1; NBR1: NBR1 autophagy cargo receptor; PIK3C3/VPS34: phosphatidylinositol 3-kinase catalytic subunit type 3; PKD2/PC2: polycystin 2, transient receptor potential cation channel; RTN4/NOGO: reticulon 4; RUBCN/RUBICON: rubicon autophagy regulator; SQSTM1/p62: sequestosome 1; UVRAG: UV radiation resistance associated; WIPI2: WD repeat domain, phosphoinositide interacting 2.


Assuntos
Autofagia , Proteína Beclina-1/fisiologia , Canais de Cátion TRPP/fisiologia , Proteína Beclina-1/metabolismo , Western Blotting , Imunofluorescência , Células HEK293 , Células HeLa , Humanos , Imunoprecipitação , Canais de Cátion TRPP/metabolismo
11.
Circulation ; 142(24): 2356-2370, 2020 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-33113340

RESUMO

BACKGROUND: BET (bromodomain and extraterminal) epigenetic reader proteins, in particular BRD4 (bromodomain-containing protein 4), have emerged as potential therapeutic targets in a number of pathological conditions, including cancer and cardiovascular disease. Small-molecule BET protein inhibitors such as JQ1 have demonstrated efficacy in reversing cardiac hypertrophy and heart failure in preclinical models. Yet, genetic studies elucidating the biology of BET proteins in the heart have not been conducted to validate pharmacological findings and to unveil potential pharmacological side effects. METHODS: By engineering a cardiomyocyte-specific BRD4 knockout mouse, we investigated the role of BRD4 in cardiac pathophysiology. We performed functional, transcriptomic, and mitochondrial analyses to evaluate BRD4 function in developing and mature hearts. RESULTS: Unlike pharmacological inhibition, loss of BRD4 protein triggered progressive declines in myocardial function, culminating in dilated cardiomyopathy. Transcriptome analysis of BRD4 knockout mouse heart tissue identified early and specific disruption of genes essential to mitochondrial energy production and homeostasis. Functional analysis of isolated mitochondria from these hearts confirmed that BRD4 ablation triggered significant changes in mitochondrial electron transport chain protein expression and activity. Computational analysis identified candidate transcription factors participating in the BRD4-regulated transcriptome. In particular, estrogen-related receptor α, a key nuclear receptor in metabolic gene regulation, was enriched in promoters of BRD4-regulated mitochondrial genes. CONCLUSIONS: In aggregate, we describe a previously unrecognized role for BRD4 in regulating cardiomyocyte mitochondrial homeostasis, observing that its function is indispensable to the maintenance of normal cardiac function.


Assuntos
Cardiomiopatia Dilatada/metabolismo , Núcleo Celular/metabolismo , Metabolismo Energético , Mitocôndrias Cardíacas/metabolismo , Miócitos Cardíacos/metabolismo , Proteínas Nucleares/metabolismo , Fatores de Transcrição/metabolismo , Transcriptoma , Disfunção Ventricular Esquerda/metabolismo , Função Ventricular Esquerda , Animais , Cardiomiopatia Dilatada/genética , Cardiomiopatia Dilatada/patologia , Cardiomiopatia Dilatada/fisiopatologia , Núcleo Celular/genética , Núcleo Celular/patologia , Complexo de Proteínas da Cadeia de Transporte de Elétrons/genética , Complexo de Proteínas da Cadeia de Transporte de Elétrons/metabolismo , Metabolismo Energético/genética , Epigênese Genética , Receptor alfa de Estrogênio/genética , Receptor alfa de Estrogênio/metabolismo , Perfilação da Expressão Gênica , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/metabolismo , Insuficiência Cardíaca/patologia , Insuficiência Cardíaca/fisiopatologia , Camundongos Knockout , Mitocôndrias Cardíacas/genética , Mitocôndrias Cardíacas/patologia , Miócitos Cardíacos/patologia , Proteínas Nucleares/genética , Fatores de Transcrição/genética , Disfunção Ventricular Esquerda/genética , Disfunção Ventricular Esquerda/patologia , Disfunção Ventricular Esquerda/fisiopatologia , Função Ventricular Esquerda/genética
12.
Nat Commun ; 11(1): 2551, 2020 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-32439985

RESUMO

Forkhead box O (FoxO) proteins and thyroid hormone (TH) have well established roles in cardiovascular morphogenesis and remodeling. However, specific role(s) of individual FoxO family members in stress-induced growth and remodeling of cardiomyocytes remains unknown. Here, we report that FoxO1, but not FoxO3, activity is essential for reciprocal regulation of types II and III iodothyronine deiodinases (Dio2 and Dio3, respectively), key enzymes involved in intracellular TH metabolism. We further show that Dio2 is a direct transcriptional target of FoxO1, and the FoxO1-Dio2 axis governs TH-induced hypertrophic growth of neonatal cardiomyocytes in vitro and in vivo. Utilizing transverse aortic constriction as a model of hemodynamic stress in wild-type and cardiomyocyte-restricted FoxO1 knockout mice, we unveil an essential role for the FoxO1-Dio2 axis in afterload-induced pathological cardiac remodeling and activation of TRα1. These findings demonstrate a previously unrecognized FoxO1-Dio2 signaling axis in stress-induced cardiomyocyte growth and remodeling and intracellular TH homeostasis.


Assuntos
Proteína Forkhead Box O1/metabolismo , Iodeto Peroxidase/metabolismo , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Hormônios Tireóideos/metabolismo , Animais , Animais Recém-Nascidos , Cardiomegalia/metabolismo , Cardiomegalia/patologia , Cardiomegalia/fisiopatologia , Células Cultivadas , Proteína Forkhead Box O1/genética , Regulação da Expressão Gênica , Iodeto Peroxidase/antagonistas & inibidores , Iodeto Peroxidase/genética , Camundongos , Camundongos Knockout , Ratos , Transdução de Sinais , Remodelação Ventricular
13.
VozAndes ; 31(2): 66-78, 2020.
Artigo em Espanhol | LILACS | ID: biblio-1146655

RESUMO

La prevalencia de poliposis vesicular en la población general oscila entre el 1.5% y 5.5%. Estudios han demostrado que el Ecuador hasta el 5,3% de las personas presentan esta característica. La progresión a cáncer de vesícula biliar es temida por una baja tasa de sobrevida de hasta menos del 4% a los 5 años; la incidencia de cáncer vesicular en Ecuador bordea 12,9/100.000 habitantes. El objetivo de este estudio fue determinar si existe una asociación entre el tamaño de los pólipos y el riesgo de malignidad. Metodología se realizó una búsqueda en PubMed, ScienceDirect, Google Scholar, ResearchGate y Virtual Health Library (VHL), para estudios de cohorte retrospectivos o prospectivos, que reportaran factores de riesgo de malignidad en pólipos vesiculares. Se realizó un metaanálisis para el tamaño de pólipo >10 mm vs <10mm y el riesgo de malignidad. Resultados 15 publicaciones se incluyeron en esta revisión. El tamaño medio de pólipos fue 11,6mm (DS: ±3,1mm), entre 10 de 15 estudios. El tamaño de los pólipos vesiculares fue el factor de riesgo más evaluado para malignidad, reportándose entre >10mm y ≥15mm. Una edad > 50 años se asoció con riesgo de malignidad en varios estudios. El metaanálisis para pólipos >10mm vs <10mm y riesgo de malignidad reportó un OR global de 13,4 (IC 95%: 11,456 a 26,431; p<0,001) (I2: 45,6%; IC 95%: 0,00 a 72,21; p=0,0424). Conclusiones el tamaño de pólipo >10mm se considera un factor de riesgo significativo para malignidad. El diagnóstico y tratamiento oportuno de esta patología contribuirá a la reducción de la mortalidad por cáncer de vesícula biliar.


The prevalence of vesicular polyposis in the general population ranges from 1.5% to 5.5%. Studies have shown that Ecuador up to 5.3% of people have this characteristic. Progression to gallbladder cancer is feared by a low survival rate of up to less than 4% at age 5; the incidence of vesicular cancer in Ecuador borders 12.9/100,000 inhabitants. The objective of this study was to determine whether there is an association between the size of the polyps and the risk of malignancy. Methodology A search was conducted in PubMed, ScienceDirect, Google Scholar, ResearchGate and Virtual Health Library (VHL), for retrospective or prospective cohort studies, which reported risk factors for malignancy in vesicular polyps. A meta-analysis was performed for the size of polyp >10 mm vs <10mm and the risk of malignancy. Results 15 publications were included in this review. The average polyp size was 11.6mm (DS: ±3.1mm), among 10 out of 15 studies. The size of the vesicular polyps was the most evaluated risk factor for malignancy, reporting between >10mm and ≥15mm. An age > 50 years was associated with risk of malignancy in several studies. Meta-analysis for polyps >10mm vs <10mm and risk of malignancy reported a global OR of 13.4 (95% CI: 11,456 to 26,431; p<0.001) (I2: 45.6%; 95% CI: 0.00 to 72.21; 0.0424). Conclusions the size of polyp >10mm is considered a significant risk factor for malignancy. Timely diagnosis and treatment of this pathology will contribute to the reduction of gallbladder cancer mortality.


Assuntos
Humanos , Masculino , Feminino , Pólipos , Vesícula Biliar , Neoplasias , População , Oncologia
14.
J Mol Cell Cardiol ; 134: 144-153, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31340162

RESUMO

BACKGROUND: Energy metabolism and substrate selection are key aspects of correct myocardial mechanical function. Myocardial preference for oxidizable substrates changes in both hypertrophy and in overt failure. Previous work has shown that glucose oxidation is upregulated in overpressure hypertrophy, but its fate in overt failure is less clear. Anaplerotic flux of pyruvate into the tricarboxylic acid cycle (TCA) has been posited as a secondary fate of glycolysis, aside from pyruvate oxidation or lactate production. METHODS AND RESULTS: A model of heart failure that emulates both valvular and hypertensive heart disease, the severe transaortic constriction (sTAC) mouse, was assayed for changes in substrate preference using metabolomic and carbon-13 flux measurements. Quantitative measures of O2 consumption in the Langendorff perfused mouse heart were paired with 13C isotopomer analysis to assess TCA cycle turnover. Since the heart accommodates oxidation of all physiological energy sources, the utilization of carbohydrates, fatty acids, and ketones were measured simultaneously using a triple-tracer NMR method. The fractional contribution of glucose to acetyl-CoA production was upregulated in heart failure, while other sources were not significantly different. A model that includes both pyruvate carboxylation and anaplerosis through succinyl-CoA produced superior fits to the data compared to a model using only pyruvate carboxylation. In the sTAC heart, anaplerosis through succinyl-CoA is elevated, while pyruvate carboxylation was not. Metabolomic data showed depleted TCA cycle intermediate pool sizes versus the control, in agreement with previous results. CONCLUSION: In the sTAC heart failure model, the glucose contribution to acetyl-CoA production was significantly higher, with compensatory changes in fatty acid and ketone oxidation not reaching a significant level. Anaplerosis through succinyl-CoA is also upregulated, and is likely used to preserve TCA cycle intermediate pool sizes. The triple tracer method used here is new, and can be used to assess sources of acetyl-CoA production in any oxidative tissue.


Assuntos
Aorta/patologia , Metabolismo Energético/fisiologia , Insuficiência Cardíaca/metabolismo , Insuficiência Cardíaca/patologia , Metaboloma , Miocárdio/metabolismo , Acetilcoenzima A/metabolismo , Animais , Aorta/cirurgia , Ciclo do Ácido Cítrico/fisiologia , Constrição , Modelos Animais de Doenças , Coração/fisiopatologia , Insuficiência Cardíaca/fisiopatologia , Masculino , Metabolômica , Camundongos , Camundongos Endogâmicos C57BL , Oxirredução , Ácido Pirúvico/metabolismo
15.
Circulation ; 140(11): 921-936, 2019 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-31220931

RESUMO

BACKGROUND: Polycystin-1 (PC1) is a transmembrane protein originally identified in autosomal dominant polycystic kidney disease where it regulates the calcium-permeant cation channel polycystin-2. Autosomal dominant polycystic kidney disease patients develop renal failure, hypertension, left ventricular hypertrophy, and diastolic dysfunction, among other cardiovascular disorders. These individuals harbor PC1 loss-of-function mutations in their cardiomyocytes, but the functional consequences are unknown. PC1 is ubiquitously expressed, and its experimental ablation in cardiomyocyte-specific knockout mice reduces contractile function. Here, we set out to determine the pathophysiological role of PC1 in cardiomyocytes. METHODS: Wild-type and cardiomyocyte-specific PC1 knockout mice were analyzed by echocardiography. Excitation-contraction coupling was assessed in isolated cardiomyocytes and human embryonic stem cell-derived cardiomyocytes, and functional consequences were explored in heterologous expression systems. Protein-protein interactions were analyzed biochemically and by means of ab initio calculations. RESULTS: PC1 ablation reduced action potential duration in cardiomyocytes, decreased Ca2+ transients, and myocyte contractility. PC1-deficient cardiomyocytes manifested a reduction in sarcoendoplasmic reticulum Ca2+ stores attributable to a reduced action potential duration and sarcoendoplasmic reticulum Ca2+ ATPase (SERCA) activity. An increase in outward K+ currents decreased action potential duration in cardiomyocytes lacking PC1. Overexpression of full-length PC1 in HEK293 cells significantly reduced the current density of heterologously expressed Kv4.3, Kv1.5 and Kv2.1 potassium channels. PC1 C terminus inhibited Kv4.3 currents to the same degree as full-length PC1. Additionally, PC1 coimmunoprecipitated with Kv4.3, and a modeled PC1 C-terminal structure suggested the existence of 2 docking sites for PC1 within the N terminus of Kv4.3, supporting a physical interaction. Finally, a naturally occurring human mutant PC1R4228X manifested no suppressive effects on Kv4.3 channel activity. CONCLUSIONS: Our findings uncover a role for PC1 in regulating multiple Kv channels, governing membrane repolarization and alterations in SERCA activity that reduce cardiomyocyte contractility.


Assuntos
Potenciais de Ação/fisiologia , Miócitos Cardíacos/metabolismo , Canais de Potássio de Abertura Dependente da Tensão da Membrana/metabolismo , Canais de Cátion TRPP/deficiência , Animais , Humanos , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Canais de Cátion TRPP/genética
16.
Xenotransplantation ; 26(3): e12507, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30963648

RESUMO

INTRODUCTION: Recent immunological and transgenic advances are a promising alternative using limited materials of human origin for transplantation. However, it is essential to achieve social acceptance of this therapy. OBJECTIVE: To analyze the attitude of nursing students from Spanish universities toward organ xenotransplantation (XTx) and to determine the factors affecting their attitude. MATERIALS AND METHODS: Type of study: A sociological, multicentre, and observational study. STUDY POPULATION: Nursing students enrolled in Spain (n = 28,000). SAMPLE SIZE: A sample of 10 566 students estimating a proportion of 76% (99% confidence and precision of ±1%), stratified by geographical area and year of study. Instrument of measurement: A validated questionnaire (PCID-XenoTx-RIOS) was handed out to every student in a compulsory session. This survey was self-administered and self-completed voluntarily and anonymously by each student in a period of 5-10 min. STATISTICAL ANALYSIS: descriptive analysis, Student's t test, the chi-square test, and a logistic regression analysis. RESULTS: A completion rate: 84% (n = 8913) was obtained. If the results of XTx were as good as in human donation, 74% (n = 6564) would be in favor and 22% (n = 1946) would have doubts. The following variables affected this attitude: age (P < 0.001); sex (P < 0.001); geographical location (P < 0.001); academic year of study (P < 0.001); attitude toward organ donation (P < 0.001); belief in the possibility of needing a transplant (P < 0.001); discussion of transplantation with one's family (P < 0.001) and friends (P < 0.001); and the opinion of one's partner (P < 0.001). The following variables persisted in the multivariate analysis: being a male (OR = 1.436; P < 0.001); geographical location (OR = 1.937; P < 0.001); an attitude in favor of donation (OR = 1.519; P < 0.001); belief in the possibility of needing a transplant (OR = 1.497; P = 0.036); and having spoken about the issue with family (OR = 1.351; P < 0.001) or friends (OR = 1.240; P = 0.001). CONCLUSIONS: The attitude of nursing students toward organ XTx is favorable and is associated with factors of general knowledge about organ donation and transplantation and social interaction.


Assuntos
Atitude , Transplante de Órgãos , Estudantes de Enfermagem/estatística & dados numéricos , Transplante Heterólogo , Feminino , Xenoenxertos/imunologia , Humanos , Doadores Vivos , Masculino , Transplante de Órgãos/métodos , Estudantes de Medicina , Obtenção de Tecidos e Órgãos/métodos
17.
Nature ; 568(7752): 351-356, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30971818

RESUMO

Heart failure with preserved ejection fraction (HFpEF) is a common syndrome with high morbidity and mortality for which there are no evidence-based therapies. Here we report that concomitant metabolic and hypertensive stress in mice-elicited by a combination of high-fat diet and inhibition of constitutive nitric oxide synthase using Nω-nitro-L-arginine methyl ester (L-NAME)-recapitulates the numerous systemic and cardiovascular features of HFpEF in humans. Expression of one of the unfolded protein response effectors, the spliced form of X-box-binding protein 1 (XBP1s), was reduced in the myocardium of our rodent model and in humans with HFpEF. Mechanistically, the decrease in XBP1s resulted from increased activity of inducible nitric oxide synthase (iNOS) and S-nitrosylation of the endonuclease inositol-requiring protein 1α (IRE1α), culminating in defective XBP1 splicing. Pharmacological or genetic suppression of iNOS, or cardiomyocyte-restricted overexpression of XBP1s, each ameliorated the HFpEF phenotype. We report that iNOS-driven dysregulation of the IRE1α-XBP1 pathway is a crucial mechanism of cardiomyocyte dysfunction in HFpEF.


Assuntos
Insuficiência Cardíaca/metabolismo , Insuficiência Cardíaca/fisiopatologia , Estresse Nitrosativo , Volume Sistólico , Animais , Dieta Hiperlipídica/efeitos adversos , Modelos Animais de Doenças , Endorribonucleases/metabolismo , Insuficiência Cardíaca/prevenção & controle , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Miócitos Cardíacos/enzimologia , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , NG-Nitroarginina Metil Éster/farmacologia , Óxido Nítrico Sintase Tipo II/antagonistas & inibidores , Óxido Nítrico Sintase Tipo II/deficiência , Óxido Nítrico Sintase Tipo II/genética , Óxido Nítrico Sintase Tipo II/metabolismo , Fenótipo , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais , Proteína 1 de Ligação a X-Box/genética , Proteína 1 de Ligação a X-Box/metabolismo
18.
Circulation ; 139(20): 2342-2357, 2019 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-30818997

RESUMO

BACKGROUND: The primary cilium is a singular cellular structure that extends from the surface of many cell types and plays crucial roles in vertebrate development, including that of the heart. Whereas ciliated cells have been described in developing heart, a role for primary cilia in adult heart has not been reported. This, coupled with the fact that mutations in genes coding for multiple ciliary proteins underlie polycystic kidney disease, a disorder with numerous cardiovascular manifestations, prompted us to identify cells in adult heart harboring a primary cilium and to determine whether primary cilia play a role in disease-related remodeling. METHODS: Histological analysis of cardiac tissues from C57BL/6 mouse embryos, neonatal mice, and adult mice was performed to evaluate for primary cilia. Three injury models (apical resection, ischemia/reperfusion, and myocardial infarction) were used to identify the location and cell type of ciliated cells with the use of antibodies specific for cilia (acetylated tubulin, γ-tubulin, polycystin [PC] 1, PC2, and KIF3A), fibroblasts (vimentin, α-smooth muscle actin, and fibroblast-specific protein-1), and cardiomyocytes (α-actinin and troponin I). A similar approach was used to assess for primary cilia in infarcted human myocardial tissue. We studied mice silenced exclusively in myofibroblasts for PC1 and evaluated the role of PC1 in fibrogenesis in adult rat fibroblasts and myofibroblasts. RESULTS: We identified primary cilia in mouse, rat, and human heart, specifically and exclusively in cardiac fibroblasts. Ciliated fibroblasts are enriched in areas of myocardial injury. Transforming growth factor ß-1 signaling and SMAD3 activation were impaired in fibroblasts depleted of the primary cilium. Extracellular matrix protein levels and contractile function were also impaired. In vivo, depletion of PC1 in activated fibroblasts after myocardial infarction impaired the remodeling response. CONCLUSIONS: Fibroblasts in the neonatal and adult heart harbor a primary cilium. This organelle and its requisite signaling protein, PC1, are required for critical elements of fibrogenesis, including transforming growth factor ß-1-SMAD3 activation, production of extracellular matrix proteins, and cell contractility. Together, these findings point to a pivotal role of this organelle, and PC1, in disease-related pathological cardiac remodeling and suggest that some of the cardiovascular manifestations of autosomal dominant polycystic kidney disease derive directly from myocardium-autonomous abnormalities.


Assuntos
Fibroblastos/ultraestrutura , Miocárdio/patologia , Rim Policístico Autossômico Dominante/patologia , Células 3T3/ultraestrutura , Animais , Animais Recém-Nascidos , Remodelamento Atrial , Cílios , Coração Fetal/citologia , Fibrose , Traumatismos Cardíacos/patologia , Humanos , Cinesinas/deficiência , Cinesinas/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Infarto do Miocárdio/patologia , Traumatismo por Reperfusão Miocárdica/patologia , Rim Policístico Autossômico Dominante/genética , Ratos , Transdução de Sinais , Proteína Smad3/fisiologia , Canais de Cátion TRPP/deficiência , Canais de Cátion TRPP/fisiologia , Fator de Crescimento Transformador beta1/fisiologia , Remodelação Ventricular
19.
J Mol Cell Cardiol ; 118: 110-121, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29518398

RESUMO

AIMS: Considerable evidence points to critical roles of intracellular Ca2+ homeostasis in the modulation and control of autophagic activity. Yet, underlying molecular mechanisms remain unknown. Mutations in the gene (pkd2) encoding polycystin-2 (PC2) are associated with autosomal dominant polycystic kidney disease (ADPKD), the most common inherited nephropathy. PC2 has been associated with impaired Ca2+ handling in cardiomyocytes and indirect evidence suggests that this protein may be involved in autophagic control. Here, we investigated the role for PC2 as an essential regulator of Ca2+ homeostasis and autophagy. METHODS AND RESULTS: Activation of autophagic flux triggered by mTOR inhibition either pharmacologically (rapamycin) or by means of nutrient depletion was suppressed in cells depleted of PC2. Moreover, cardiomyocyte-specific PC2 knockout mice (αMhc-cre;Pkd2F/F mice) manifested impaired autophagic flux in the setting of nutrient deprivation. Stress-induced autophagy was blunted by intracellular Ca2+ chelation using BAPTA-AM, whereas removal of extracellular Ca2+ had no effect, pointing to a role of intracellular Ca2+ homeostasis in stress-induced cardiomyocyte autophagy. To determine the link between stress-induced autophagy and PC2-induced Ca2+ mobilization, we over-expressed either wild-type PC2 (WT) or a Ca2+-channel deficient PC2 mutant (PC2-D509V). PC2 over-expression increased autophagic flux, whereas PC2-D509V expression did not. Importantly, autophagy induction triggered by PC2 over-expression was attenuated by BAPTA-AM, supporting a model of PC2-dependent control of autophagy through intracellular Ca2+. Furthermore, PC2 ablation was associated with impaired Ca2+ handling in cardiomyocytes marked by partial depletion of sarcoplasmic reticulum Ca2+ stores. Finally, we provide evidence that Ca2+-mediated autophagy elicited by PC2 is a mechanism conserved across multiple cell types. CONCLUSION: Together, this study unveils PC2 as a novel regulator of autophagy acting through control of intracellular Ca2+ homeostasis.


Assuntos
Autofagia , Miócitos Cardíacos/metabolismo , Canais de Cátion TRPP/metabolismo , Animais , Autofagia/efeitos dos fármacos , Proteínas Relacionadas à Autofagia/genética , Proteínas Relacionadas à Autofagia/metabolismo , Cálcio/metabolismo , Células HeLa , Humanos , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Camundongos Knockout , Miócitos Cardíacos/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Retículo Sarcoplasmático/efeitos dos fármacos , Retículo Sarcoplasmático/metabolismo , Transdução de Sinais/efeitos dos fármacos , Sirolimo/farmacologia , Estresse Mecânico
20.
Circ Res ; 122(6): e20-e33, 2018 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-29362227

RESUMO

RATIONALE: The regulator of calcineurin 1 (RCAN1) inhibits CN (calcineurin), a Ca2+-activated protein phosphatase important in cardiac remodeling. In humans, RCAN1 is located on chromosome 21 in proximity to the Down syndrome critical region. The hearts and brains of Rcan1 KO mice are more susceptible to damage from ischemia/reperfusion (I/R); however, the underlying cause is not known. OBJECTIVE: Mitochondria are key mediators of I/R damage. The goal of these studies was to determine the impact of RCAN1 on mitochondrial dynamics and function. METHODS AND RESULTS: Using both neonatal and isolated adult cardiomyocytes, we show that, when RCAN1 is depleted, the mitochondrial network is more fragmented because of increased CN-dependent activation of the fission protein, DRP1 (dynamin-1-like). Mitochondria in RCAN1-depleted cardiomyocytes have reduced membrane potential, O2 consumption, and generation of reactive oxygen species, as well as a reduced capacity for mitochondrial Ca2+ uptake. RCAN1-depleted cardiomyocytes were more sensitive to I/R; however, pharmacological inhibition of CN, DRP1, or CAPN (calpains; Ca2+-activated proteases) restored protection, suggesting that in the absence of RCAN1, CAPN-mediated damage after I/R is greater because of a decrease in the capacity of mitochondria to buffer cytoplasmic Ca2+. Increasing RCAN1 levels by adenoviral infection was sufficient to enhance fusion and confer protection from I/R. To examine the impact of more modest, and biologically relevant, increases in RCAN1, we compared the mitochondrial network in induced pluripotent stem cells derived from individuals with Down syndrome to that of isogenic, disomic controls. Mitochondria were more fused, and O2 consumption was greater in the trisomic induced pluripotent stem cells; however, coupling efficiency and metabolic flexibility were compromised compared with disomic induced pluripotent stem cells. Depletion of RCAN1 from trisomic induced pluripotent stem cells was sufficient to normalize mitochondrial dynamics and function. CONCLUSIONS: RCAN1 helps maintain a more interconnected mitochondrial network, and maintaining appropriate RCAN1 levels is important to human health and disease.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular/genética , Mitocôndrias Cardíacas/metabolismo , Dinâmica Mitocondrial , Proteínas Musculares/genética , Traumatismo por Reperfusão Miocárdica/genética , Animais , Proteínas de Ligação ao Cálcio , Calpaína/genética , Calpaína/metabolismo , Linhagem Celular , Células Cultivadas , Dinaminas/genética , Dinaminas/metabolismo , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Traumatismo por Reperfusão Miocárdica/metabolismo , Oxigênio/metabolismo , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...